
Carnival	Tickets	(tickets)
Ringo	is	at	a	carnival	in	Singapore.	He	has	some	prize	tickets	in	his	bag,	which	he	would	like	to	use
at	the	prize	game	stall.	Each	ticket	comes	in	one	of	 	colours	and	has	a	non-negative	integer	printed
on	it.	The	integers	printed	on	different	tickets	might	be	the	same.	Due	to	a	quirk	in	the	carnival	rules,	
	is	guaranteed	to	be	even.

Ringo	has	 	 tickets	of	each	colour	 in	his	bag,	 that	 is	a	 total	 of	 	 tickets.	The	 ticket	 	 of	 the
colour	 	has	the	integer	 	printed	on	it	(and).

The	 prize	 game	 is	 played	 in	 	 rounds,	 numbered	 from	 	 to	 .	 Each	 round	 is	 played	 in	 the
following	order:

From	his	bag,	Ringo	selects	a	set	of	 	tickets,	one	ticket	from	each	colour.	He	then	gives	the
set	to	the	game	master.
The	game	master	notes	down	the	integers	 	printed	on	the	tickets	of
the	set.	The	order	of	these	 	integers	is	not	important.
The	game	master	pulls	out	a	special	card	from	a	lucky	draw	box	and	notes	down	the	integer	
printed	on	that	card.
The	game	master	calculates	the	absolute	differences	between	 	and	 	for	each	 	from	 	to	

.	Let's	 	be	the	sum	of	these	absolute	differences.
For	this	round,	the	game	master	gives	Ringo	a	prize	with	a	value	equal	to	 .
The	tickets	in	the	set	are	discarded	and	cannot	be	used	in	future	rounds.

The	remaining	tickets	in	Ringo's	bag	after	 	rounds	of	the	game	are	discarded.

By	watching	closely,	Ringo	realized	that	the	prize	game	is	rigged!	There	is	actually	a	printer	inside
the	lucky	draw	box.	In	each	round,	the	game	master	finds	an	integer	 	that	minimizes	the	value	of
the	prize	of	that	round.	The	value	chosen	by	the	game	master	is	printed	on	the	special	card	for	that
round.

Having	all	this	information,	Ringo	would	like	to	allocate	tickets	to	the	rounds	of	the	game.	That	is,	he
wants	to	select	the	ticket	set	to	use	in	each	round	in	order	to	maximize	the	total	value	of	the	prizes.

Implementation	details

You	should	implement	the	following	procedure:

int64	find_maximum(int	k,	int[][]	x)

:	the	number	of	rounds.

Tickets (1 of 4)

:	an	 	array	describing	the	integers	on	each	ticket.	Tickets	of	each	color	are	sorted	in
non-decreasing	order	of	their	integers.
This	procedure	is	called	exactly	once.
This	procedure	should	make	exactly	one	call	to	allocate_tickets	(see	below),	describing	
	ticket	sets,	one	for	each	round.	The	allocation	should	maximize	the	total	value	of	the	prizes.
This	procedure	should	return	the	maximum	total	value	of	the	prizes.

The	procedure	allocate_tickets	is	defined	as	follows:

void	allocate_tickets(int[][]	s)

:	an	 	array.	The	value	of	 	should	be	 	if	the	ticket	 	of	the	colour	 	is	used	in	the
set	of	round	 	of	the	game,	or	 	if	it	is	not	used	at	all.
For	 each	 ,	 among	 	 each	 value	

	must	occur	exactly	once,	and	all	other	entries	must	be	 .
If	there	are	multiple	allocations	resulting	in	the	maximum	total	prize	value,	it	is	allowed	to	report
any	of	them.

Examples

Example	1

Consider	the	following	call:

find_maximum(2,	[[0,	2,	5],[1,	1,	3]])

This	means	that:

there	are	 	rounds;
the	integers	printed	on	the	tickets	of	colour	 	are	 ,	 	and	 ,	respectively;
the	integers	printed	on	the	tickets	of	colour	 	are	 ,	 	and	 ,	respectively.

A	possible	allocation	that	gives	the	maximum	total	prize	value	is:

In	round	 ,	Ringo	picks	ticket	 	of	colour	 	(with	the	integer)	and	ticket	 	of	colour	 	(with	the
integer).	The	lowest	possible	value	of	the	prize	in	this	round	is	 .	E.g.,	the	game	master	may
choose	 :	 .
In	round	 ,	Ringo	picks	ticket	 	of	colour	 	(with	the	integer)	and	ticket	 	of	colour	 	(with	the
integer).	The	lowest	possible	value	of	the	prize	in	this	round	is	 .	E.g.,	the	game	master	may
choose	 :	 .
Therefore,	the	total	value	of	the	prizes	would	be	 .

To	 report	 this	 allocation,	 the	 procedure	 find_maximum	 should	 make	 the	 following	 call	 to
allocate_tickets:

Tickets (2 of 4)

allocate_tickets([[0,	-1,	1],	[-1,	1,	0]])

Finally,	the	procedure	find_maximum	should	return	 .

Example	2

Consider	the	following	call:

find_maximum(1,	[[5,	9],	[1,	4],	[3,	6],	[2,	7]])

This	means	that:

there	is	only	one	round,
the	integers	printed	on	the	tickets	of	colour	 	are	 	and	 ,	respectively;
the	integers	printed	on	the	tickets	of	colour	 	are	 	and	 ,	respectively;
the	integers	printed	on	the	tickets	of	colour	 	are	 	and	 ,	respectively;
the	integers	printed	on	the	tickets	of	colour	 	are	 	and	 ,	respectively.

A	possible	allocation	that	gives	the	maximum	total	prize	value	is:

In	round	 ,	Ringo	picks	ticket	 	of	colour	 	 (with	 the	 integer),	 ticket	 	of	colour	 	 (with	 the
integer),	ticket	 	of	colour	 	(with	the	integer),	and	ticket	 	of	colour	 	(with	the	integer).
The	 lowest	 possible	 value	of	 the	prize	 in	 this	 round	 is	 ,	when	 the	game	master	 chooses	

:	 .

To	 report	 this	 solution,	 the	 procedure	 find_maximum	 should	 make	 the	 following	 call	 to
allocate_tickets:

allocate_tickets([[-1,	0],	[0,	-1],	[0,	-1],	[-1,	0]])

Finally,	the	procedure	find_maximum	should	return	 .

Constraints

	and	 	is	even.

	(for	all	 	and)
	(for	all	 	and)

Subtasks

1.	 (11	points)	
2.	 (16	points)	
3.	 (14	points)	 	(for	all	 	and)
4.	 (14	points)	
5.	 (12	points)	

Tickets (3 of 4)

6.	 (23	points)	
7.	 (10	points)	No	additional	constraints.

Sample	grader

The	sample	grader	reads	the	input	in	the	following	format:

line	 :	
line	 	():	

The	sample	grader	prints	your	answer	in	the	following	format:

line	 :	the	return	value	of	find_maximum
line	 	():	

Tickets (4 of 4)

